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Surface-directed phase separation with off-critical composition: Analytical and numerical results
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We study the interplay of wetting and phase separation in an unstable binary mixture (AB) with off-critical
composition, placed in contact with a surface which prefers the componentA. We consider surface potentials
V(z);z2n, wherez is the distance from the surface, and present analytical arguments and detailed numerical
results to elucidate wetting-layer kinetics for arbitrary mixture compositions. If the preferred component is the
minority phase, the wetting-layer thickness exhibits a potential-specific behavior at early timest, R1

;t1/(n12), before crossing over to the universal growth law,R1;t1/3. On the other hand, if the preferred
component is the majority phase, there is a crossover from potential-specific growth~as before! to a slower
growth regime.
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I. INTRODUCTION

Consider a binary mixture (AB), which is homogeneous
at high temperatures and phase-separated at low tem
tures. If the mixture is rapidly quenched from the one-ph
region of the phase diagram to the two-phase region
evolves towards the phase-separated state via a nonl
phase ordering process@1–3#. Much research interest ha
focused on this far-from-equilibrium evolution, and the
now exists a good understanding of phase ordering dynam
for bulk binary mixtures. Typically, the segregating syste
coarsens intoA-rich andB-rich domains, which are charac
terized by a growing length scaleL(t);tf, wheret is the
time after the quench. The growth exponentf51/3 when
coarsening is driven by a diffusive mechanism, as in so
mixtures. This growth law is referred to as the Lifshit
Slyozov or LS law@4#. For fluid mixtures, the hydrodynami
velocity field provides additional modes of material tran
port. Droplet diffusion and coagulation also yields a grow
exponent f51/3, and constitutes the dominant grow
mechanism when the coarsening morphology is not bic
tinuous @5#. However, if the phase-separating fluid has
interconnected morphology, there are various growth
gimes with crossovers fromf51/3 ~diffusive! →f51 ~vis-
cous hydrodynamic! →f52/3 ~inertial hydrodynamic!
@6,7#.

Apart from the domain growth laws, experimentalists a
also interested in quantitative features of the pha
separating morphologies—as reflected in the time-depen
structure factorS(kW ,t) (kW being the wave vector! or its Fou-
rier transform, the correlation function. In the limit whe
one of the components is present in a vanishingly small fr
tion, these quantities were analytically obtained by Lifsh
and Slyozov@4#. However, our understanding of the structu
factor is relatively limited in the case where appreciable fr
tions of both components are present. We understand
behavior ofS(kW ,t) in the limits k→0 andk→` @2,3#, but
there is no comprehensive theory for intermediate valuesk
@8#.

Next, let us focus on the experimentally important pro
lem of an immiscible binary mixture (AB) in contact with a
1063-651X/2002/66~6!/061602~10!/$20.00 66 0616
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surface~S! with a preferential attraction for one of the com
ponents of the mixture~say,A). Let gA , gB , ands denote
the surface tensions betweenA-S, B-S, and A-B, respec-
tively. Then, the contact angleu betweenA andS is obtained
as the solution ofs cosu5gB2gA @9#. This equation has no
solution if gB2gA.s, which corresponds to a situatio
where the componentA completely wets the surface@com-
pletely wet~CW! morphology#. For gB2gA,s, bothA and
B are in contact with the surface in a partially wet~PW!
morphology, though there is a surplus of the preferred co
ponentA at the surface. The equilibrium transitions betwe
PW and CW morphologies, and the effects of geometry a
composition, have been extensively studied in the literat
@10–12#.

In this paper, we will focus on the following dynamica
problem. Consider a homogeneous mixtureAB ~at high tem-
perature! in contact with a surface which prefersA. At time
t50, the system is quenched deep below the miscibi
gap. The subsequent evolution of the system is character
by ~a! bulk phase separation;~b! kinetics of wetting at the
surface; and~c! the dynamical interplay of surface wettin
and bulk phase separation.

This problem is of great experimental interest, and w
first studied by Joneset al. @13# in the context of phase
separating polymer mixtures in a ‘‘semi-infinite’’ geometr
These authors examined laterally averaged composition
files as a function of distance from the wetting surface. In
bulk, the lateral-averaging procedure does not yield a s
tematic behavior because the phase-separation profiles
randomly oriented wave vectors. However, at the surfa
there is a wetting layer of the preferred component, which
followed by a depletion layer, etc. The surface morphology
time dependent and propagates into the bulk. There h
been many subsequent experiments on this problem@14,15#,
and some of these are reviewed by Krausch@16#.

The first phenomenological model of surface-direct
phase separation was proposed by Puri and Binder@17#, and
will be discussed in Sec. II. It consists of~a! the Cahn-
Hilliard-Cook ~CHC! model for bulk phase separatio
supplemented with a surface-potential term; and~b! two
boundary conditions on the order parameter at the surf
This and similar models have been studied analytically a
©2002 The American Physical Society02-1
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numerically by various authors@18–23#, and some of these
works have been reviewed by Puri and Frisch@24# and
Binder @25#. Most of these studies have focused on mixtu
with critical composition, and there have been few studies
the off-critical case@23,19#.

The experimental and numerical studies of this probl
have reported a wide range of growth exponents for
wetting-layer dynamics. In a recent paper@26#, we have at-
tempted to systematize these observations in the conte
segregation driven by diffusive processes. In particular,
have focused on the crossovers from potential-spec
growth to universal growth; and the role of mixture comp
sition in determining growth laws and crossovers. This pa
is an expanded version of Ref.@26#. It presents many impor
tant results for a broad range of compositions, and contai
pedagogical exposition of the issues discussed in our ea
paper.

This paper is organized as follows. Section II discus
our modeling of surface-directed phase separation, and
sents numerical details regarding our simulations. In Sec.
we present detailed analytical and numerical results. Sec
IV concludes this paper with a summary and discussion
our results.

II. MODELING OF SURFACE-DIRECTED PHASE
SEPARATION

Consider a binary mixture (AB) in contact with a surface
located atz50. This physical system is described by t
semi-infinite Ising model. To mimic the phase separation o
binary mixture, we associate stochastic spin-exchange ki
ics with the Ising model by placing it in contact with a he
bath. The master equation for this stochastic evolution ca
used to obtain an evolution equation for the coarse-grai
order parameter@27,28#. Details of this procedure in the
present context are provided in earlier publications@17,28#
and we do not replicate them here. The resultant model is
usual CHC model for bulk phase separation, which has
following form ~in dimensionless units!:

]f~xW ,t!

]t
52¹W •JW~xW ,t!

52¹W •$2¹W m~xW ,t!1jW~xW ,t!%

52¹W •H ¹W Ff~xW ,t!2f~xW ,t!31
1

2
¹2f~xW ,t!

1V~z!G1jW~xW ,t!J , ~1!

wheref(xW ,t)[f(rW ,z,t) is the order parameter, which de
pends on dimensionless spacexW and timet. The spatial vari-
able is decomposed into (d21) variablesrW parallel to the
wall (d being dimensionality!, and one variablez (.0) per-
pendicular to the wall. In Eq.~1!, the order parameter locall
saturates to its equilibrium values off* 511 ~correspond-
ing to A, say! andf* 521 ~corresponding toB). However,
the evolution conserves the overall composition, i
V21*dxWf(xW ,t)5f0, whereV is the system volume andf0
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is the average order parameter. The quantitiesJW (xW ,t) and
m(xW ,t) in Eq. ~1! refer to the current and chemical-potenti
difference betweenA andB, respectively.

In Eq. ~1!, V(z) denotes the surface potential. We ha
studied both short-ranged~delta function or exponential! and
power-law potentials. Here, we present results for the pow
law case,

V~z!5h1 , z<1,

5
h1

zn , z.1, ~2!

where we introduce a lower cutoff to avoid the power-la
singularity atz50. This cutoff is placed atz51, rather than
at some ‘‘small’’ value, as our numerical discretization of E
~1! ~described below! will use a large mesh sizeDx51 in all
coordinate directions. Such potentials are ubiquitous in
context of surface-molecule interactions, e.g.,n5k2d, with
k56 and 7 corresponding to cases with nonretarded
retarded van der Waals’ interactions, respectively@29,30#.
Clearly, the short-ranged case is recovered in the limin
→`.

The thermal fluctuations in Eq.~1! are modeled by Gauss
ian white noise with zero mean,

^j i~xW ,t!&50, i 51→d,

^j i~xW ,t!j j~xW8,t8!&5ed i j d~xW2xW8!d~t2t8!, ~3!

wheree measures the noise strength. The quantitye is re-
lated to system parameters as@17,24#

e5
2

3 S Tc

T
21D 22

jb
2d , ~4!

where Tc is the bulk critical temperature,T is the quench
temperature, andjb is the bulk correlation length. In mean
field theory,jb5A2/q(12T/Tc)

21/2, whereq is the coordi-
nation number of the lattice.

Finally, we must supplement Eq.~1! with boundary con-
ditions atz50, as follows@17,18#:

]f~rW ,z50,t!

]t
5V~0!1gf~rW ,z50,t!1g

]f

]z U
z50

, ~5!

05H ]

]z Ff2f31
1

2
¹2f1V~z!G1~noise!J

z50

. ~6!

Equation~5! rapidly relaxes the surface value of the ord
parameter to its equilibrium value—we will use its sta
version here. Equation~6! corresponds to zero current acro
the planez50, and enforces conservation of the order p
rameter. In general, the parametersh1 ,n,e,g,g determine the
equilibrium phase diagram of the surface@24,31#. Note that
both first- and second-order wetting transitions are descri
by our model—we will always operate in the most intere
ing regime, above the temperature of the wetting transiti
where the surface is completely wetted by the preferred c
ponent.
2-2
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SURFACE-DIRECTED PHASE SEPARATION WITH OFF- . . . PHYSICAL REVIEW E 66, 061602 ~2002!
The model described above is appropriate for a se
infinite geometry. The extension to a thin-film~or other! ge-
ometry is straightforward—the boundary conditions in E
~5! and ~6! have to be implemented on all surfaces. T
thin-film geometry gives rise to many important physic
features because of the interaction of surface-directed w
arising from different boundaries@32#.

Next, it is relevant to discuss details of our Langev
simulation techniques. We implemented an Euler-discreti
version of Eq.~1! with isotropic Laplacians and derivative
on ad52 square lattice of sizeNx3Nz . The discretization
mesh sizes in space and time wereDx51 and Dt50.03,
respectively. The rather large mesh size in space is rea
able as it is smaller than the intrinsic thickness of the int
face between regions of coexisting phases. Furthermore
other length scales in our simulations~e.g., domain size and
wetting-layer thickness! diverge with time.

The boundary conditions in Eqs.~5! and~6! were imposed
at z50, and flat boundary conditions were imposed az
5Nz , viz.,

f~x,Nz11,t!5f~x,Nz21,t!,

Jz~x,Nz ,t!5Jz~x,Nz11,t!50, ~7!

where thez component of the current is identified from E
~1!. Periodic boundary conditions are imposed in thex direc-
tion.

The parameter values in our simulations were chosen
follows. We consider a nonretarded van der Waals’ poten
with n54 ~in d52) andh150.8. The other parameter va
ues wereg520.4 andg50.4, corresponding to complet
wetting in equilibrium @24,31#. Finally, thermal noise of
strength e is mimicked by uniformly distributed random
numbers between@2An , An#. The appropriate noise ampl
tude in our Langevin simulation is

An5A 3e

~Dx!dDt
. ~8!

Our d52 simulations are performed for eithere50 (T
50); or e50.0817 (A52.858 for Dx51 and Dt50.03),
which corresponds to a deep quench withT.0.22Tc from
Eq. ~4!. We have also done simulations with Gaussia
distributed noise, and the results are equivalent to those
sented here.

In the following section, we will show evolution picture
resulting from homogeneous initial conditions, withf(xW ,0)
consisting of small-amplitude uniformly distributed fluctu
tions about a background value~or off criticality! f0. We
will also present laterally averaged order-parameter profi
and study their quantitative characteristics. All statistical d
presented in this paper are obtained as an average ove
independent runs.

III. ANALYTICAL AND NUMERICAL RESULTS

Let us now present detailed analytical and numerical
sults. All numerical results are presented for the noisy ca
unless stated otherwise. As discussed earlier, we are pr
06160
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rily interested in off-critical quenches (f0Þ0), where there
is an asymmetry in the composition. The case of a criti
quench (f050) has already been studied extensive
@17,18,20,21#.

A. Minority component wets the surface„f0Ë0…

1. Evolution pictures and laterally averaged profiles

Figure 1 shows the evolution from a homogeneous ini
condition for f0520.2, corresponding to a mixture wit
40% A ~the preferred component! and 60%B. The system
size is Nx5400,Nz5300. The surface is located atz50,
and we show evolution snapshots at four different times.
us focus on the final frame att524 000. The bulk~largez)
is characterized by the usual droplet morphology for o
critical phase separation@33#. There is a wetting layer of the
preferred component at the surface, which is followed b
depletion layer. Figure 2~a! shows laterally averaged profile
as a function of depth from the surface,fav(z,t) vs z, cor-
responding to the snapshots in Fig. 1.@Figure 2~a! is compa-
rable to the averaged profiles in the experiments of Jo
et al., cf. Fig. 1 of Ref.@13#.# The averaging procedure give
fav(z,t).f0 in the bulk, where the phase-separation p
files are randomly oriented. At the surface, there is a syst
atic wetting profile, as discussed earlier. We will character
this profile by the zero crossings of@fav(z,t)2f0#—R1(t)

FIG. 1. Evolution of a homogeneous binary mixture (AB) from
our model in Eqs.~1!, ~5!, and ~6!. The simulation details and
parameters are discussed in the text. The system size wasNx3Nz

(Nx5400,Nz5300), and the surface which prefersA (f.0,
marked in black! is located atz50. The initial condition forf(xW ,0)
consisted of small-amplitude random fluctuations about a ba
ground valuef0520.2. For our choice of parameters, the surfa
is completely wetted byA. We show evolution pictures at fou
different times, as indicated.
2-3
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and R2(t) denote the first and second zeros, respectiv
and both of these grow with time.

It is also relevant to examine thez dependence of the
chemical potential m(xW ,t), and z current Jz(xW ,t)5
2]m/]z. Figure 2~b! plots the laterally averaged quantitie
fav(z,t), mav(z,t), andJav(z,t) vs z. In this case, we show
data sets att52400 forT50 @no thermal fluctuations in Eq
~1!# to obtain a better understanding of the behavior of va
ous physical quantities. On the scale of Fig. 2~b!, we only
see the positive (1) and negative (2) excursions of the
order-parameter profile, which are as indicated. The chem

FIG. 2. ~a! Plot of laterally averaged profiles,fav(z,t) vs z, for
the evolution depicted in Fig. 1. The laterally averaged profiles
obtained by averagingf(x,z,t) along thex direction for a typical
snapshot shown in Fig. 1. Furthermore, we average over 200 i
pendent runs. A horizontal line is drawn atf0520.2, correspond-
ing to the average composition of the mixture.~b! Plot of laterally
averaged quantities,g(z) vs z, for the noiseless (T50) version of
the evolution depicted in Fig. 1. We present results forg
[fav,mav,Jav at t52400. The chemical potentialm(xW ,t) and cur-
rentJz(xW ,t) are defined in the text. The1 and2 signs refer to the
sign of fav(z,t) in a particular region.
06160
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potential is flat in the wetting layer, i.e., the current is ze
and the system has equilibrated locally. The chemical po
tial increases through the depletion layer, giving a nega
currentJav ~i.e., flow of A to the wetting layer!. Subsequent
to the second enrichment layer, the lateral-averaging pro
dure does not yield a systematic behavior formav andJav.

Figure 3 is analogous to Fig. 1, but corresponds to
case f0520.6. The mean-field spinodal isfs51/A3
.0.577, so this composition lies slightly beyond th
spinodal—in the ‘‘nucleation and growth’’ region of th
phase diagram. Thermal noise nucleates many droplets o
minority phase in the bulk.~Note that the singular behavio
at the spinodal is washed out for any nonzero noise stren
@1#.! These droplets coarsen, along with the wetting laye
the surface. Figure 4 shows the corresponding laterally a
aged profiles. In general, the scenario is similar to that sho
in Figs. 1 and 2, though the time scales of growth are slo
for f0520.6. ~An intermediate case,f0520.4, is com-
pletely analogous@26#, and hence not shown here.!

Finally, we consider the evolution of an extremely o
critical case (f0520.8 or 10%A and 90%B) in Fig. 5. In
this case, the thermal fluctuations are not sufficient to nu
ate anA-rich droplet on the time scale of our simulatio
Thus, there is no phase separation in the bulk—neverthe
there is a rapid growth of the wetting layer at the surfa
Figure 6~a! shows the laterally averaged profiles correspo
ing to Fig. 5. Notice that theA-rich surface wetting layer is
followed by a layer which is moderately depleted inA, and
extends deep into the bulk. The behavior forf0520.8 dif-
fers qualitatively from that forf0520.2,20.6, and we
study mav(z,t), Jav(z,t) vs z in Fig. 6~b!. Again, we show
data for the case withT50 att52400. The chemical poten
tial is approximately flat~andz current zero! in the wetting
layer, as in Fig. 2~b!. Then, mav(z,t) increases monotoni
cally with z ~resulting in a current ofA to the wetting layer!,
and saturates exponentially to its bulk value asz→`.

e

e-

FIG. 3. Analogous to Fig. 1, but forf0520.6.
2-4
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2. Growth kinetics of wetting layers

We are interested in understanding the time depende
of various features of the wetting profiles seen in Figs. 2~a!
and 4, where the bulk undergoes phase separation.~We will
focus on the case of extremely off-critical quenches lat!
We denote the thickness of the depletion layer ash(t)
5R2(t)2R1(t).

Consider the typical evolution snapshots shown in Figs
and 3. The wetting layer grows due to two contributions
the chemical-potential gradient~or current!: ~a! the surface-
potential gradient drivesA to the wetting layer with a curren
dV(z)/dzuz5R1

; ~b! the intrinsic chemical potential~due to
local curvature! is higher on the curved surface of bu
A-rich droplets than on the flat wetting layer. This differen

FIG. 4. Analogous to Fig. 2~a!, but for f0520.6.

FIG. 5. Analogous to Fig. 1, but forf0520.8.
06160
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is estimated ass/L, whereL(t) is the bulk domain size, and
s is the surface tension.~In our dimensionless units, we hav
s52/3.! The corresponding current contribution at the w
ting layer is2s/(Lh). Thus theA current in thez direction
is

Jz.
dV~z!

dz U
z5R1

2
s

Lh
. ~9!

To estimateh(t), we assume that the wetting and dep
tion layers have an overall composition off0. This yields
the relations

R2~t!.
2

11f0
R1~t!,

h~t!.
12f0

11f0
R1~t!. ~10!

FIG. 6. Analogous to Figs. 2~a! and 2~b!, but for f0520.8.
2-5
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S. PURI AND K. BINDER PHYSICAL REVIEW E66, 061602 ~2002!
Figure 7 plotsR2 /R1 vs t for f050.0,20.2,20.4,20.6.
The horizontal lines denote the appropriate values of 2
1f0). We see that the scaling assumption of Eq.~10! is
reasonable.

Using the power-law form of the potential from Eq.~2!,
andh(t) from Eq. ~10!, Eq. ~9! yields @26#

dR1

dt
52Jz.

nh1

R1
n11

1
s

LR1
S 11f0

12f0
D . ~11!

The bulk length scale obeys the LS growth lawL(t)
5 f (f0)(st)1/3, where the functionf (f0) is known analyti-
cally in the limit uf0u→1 @2,3#, and studied numerically fo
other values off0 @33#. As R1 grows with time, the first term
on the right-hand-side~RHS! of Eq. ~11! is dominant at early
times ~for n.1) and the second term is dominant at la
times. This yields the growth regimes as

R1~t!.@n~n12!h1#1/(n12)t1(n12)], t!tc ,

.A 3

f ~f0!

~11f0!

~12f0!
~st!1/3, t@tc . ~12!

The crossover time scale is obtained by equating the ea
time and late-time length scales as~for n.1)

tc.@n~n12!h1#3/(n21)

3F f ~f0!

3

12f0

11f0
G3(n12)/2(n21)

s2[(n12)/(n21)].

~13!

Clearly, the crossover between the potential-depend
growth regime and the universal regime (R1;t1/3) can be

FIG. 7. Plot ofR2 /R1 vs t for f050.0,20.2,20.4,20.6. We
defineR1(t) as the firstz value at whichfav(z,t) crossesf0, and
R2(t) as the secondz value at whichfav(z,t) crossesf0.
06160
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extremely delayed, depending on the various system par
eters and mixture composition. This explains the observa
of diverse exponents in experiments and numerical sim
tions. Figure 3~b! of Ref. @26# plots ln@R1(t)# vs lnt for f0
50.0,20.2,20.4,20.6 and illustrates this crossover beha
ior.

Before we proceed, it is useful to discuss the applicabi
of the above arguments in the limitf0→0. In this case, the
bulk is nearly bicontinuous and has surfaces with both po
tive and negative curvatures. Then, it is appropriate to
place the second term on the RHS of Eq.~9! by its average
value, which changes sign asf0 goes through zero. This
would lead to a divergence of the crossover time in Eq.~13!
as f0→0. However, Figure 3~b! of Ref. @26# does not ex-
hibit this feature because the above arguments do not
count for the fact that even thef050 evolution morphology
is characterized byA-rich droplets in the region subseque
to the depletion layer@18,24#. These droplets are a result o
the flow ofA to the wetting layer through the depletion laye

It is also relevant to separately discuss the cases of
power-law potential withn51; and the short-ranged poten
tial V(z)5h1exp(2z/d), whered is the characteristic deca
length. For the caseV(z);z21, both terms on the RHS o
Eq. ~11! are comparable for all times, and the resulta
growth law is the LS law,R1(t);t1/3. On the other hand
the short-ranged potential yields a logarithmic early-tim
growth, R1(t);d ln(h1t/d 2), which rapidly crosses over to
the universal LS growth law. However, thermal fluctuatio
may affect the observation of the early-time logarithm
growth regime@30#.

Next, let us consider the case of extremely off-critic
quenches (f0!0), where there is no bulk phas
separation—see Fig. 5. In this situation, there are no drop
in the bulk to feed the wetting layer. Thus, the intrins
chemical potential in the bulk is the uniform valuem05f0

3

2f0. The corresponding current to the wetting layer i
2m0 /h, where h(t) is now the typical length scale o
which the order parameter exponentially saturates to its b
value—see Fig. 6~a!. We neglect lateral fluctuations and a
sume a simple form~which is justified shortly! for f(z,t) as
follows:

f~z,t!.1, z,R1~t!,

.f02B0e2(z2R1)/h, z.R1~t!. ~14!

The composition constraint then yields

h~t!.
~12f0!

B0
R1~t!. ~15!

Thus, Eq.~11! is modified as

dR1

dt
.

nh1

R1
n11

1
m0B0

12f0

1

R1
5

nh1

R1
n11

1
uf0u~11f0!B0

R1
.

~16!

The corresponding growth regimes in this case are~for all
n)
2-6
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R1~t!.@n~n12!h1#1/(n12)t1/(n12), t!tc ,

.@2uf0u~11f0!B0#1/2t1/2, t@tc . ~17!

Thus, there is a crossover from potential-dependent gro
~as before! to a universal diffusive growth law at the cros
over time

tc.@n~n12!h1#2/n@2uf0u~11f0!B0#2(n12)/n. ~18!

Figure 8 plots ln@R1(t)# vs lnt for f0520.8 and illustrates
the asymptotically diffusive growth of the wetting layer. F
the short-ranged surface potential, the initial growth regi
is logarithmic, as in the previous case.

We should now justify our earlier usage of the expone
tially saturating profile in Eq.~14!. The order-parameter pro
file subsequent to the wetting layer@z.R1(t) in Fig. 6~b!#
can be approximately obtained by linearizing the determ
istic (T50) version of Eq.~1! about the background valu
f0 asf(xW ,t)5f01c(xW ,t). We neglect fluctuations paralle
to the surface to obtain the following linear equation f
c(z,t):

]c~z,t!

]t
5~3f0

221!
]2c~z,t!

]z2 2
1

2

]4c~z,t!

]z4 2
d2V~z!

dz2 .

~19!

It is convenient to Laplace transform this equation to obt

sc~z,s!5~3f0
221!

]2c~z,s!

]z2 2
1

2

]4c~z,s!

]z4 2
V9~z!

s
,

~20!

where c(z,s)5*0
`dte2stc(z,t), and we assumec(z,0)

50. The general solution of Eq.~20! is @34#

FIG. 8. Plot of ln@R1(t)# vs lnt for f0520.8. The solid line
has a slope of 1/2, as indicated.
06160
th

e

-

-

n

c~z,s!5B1~s!e2z/j11B2~s!e2z/j2

1
j1

sD
e2z/j1E

0

z

dz8ez8/j1V9~z8!

1
j1

sD
ez/j1E

z

`

dz8e2z8/j1V9~z8!

2
j2

sD
e2z/j2E

0

z

dz8ez8/j2V9~z8!

2
j2

sD
ez/j2E

z

`

dz8e2z8/j2V9~z8!, ~21!

where

D5j1
222j2

22 , j6
225~3f0

221!6A~3f0
221!222s.

~22!

In Eq. ~21!, the coefficientsB1(s) and B2(s) are obtained
by matching the solutions forz.R1(t) andz,R1(t), which
can only be done numerically in general. However,
asymptotic analysis (s→0 or t→`) @34# shows thatj1 rap-
idly saturates to a constant, whereasj2 grows diffusively
(j2;t1/2) and can be identified with the ‘‘thickness’’ of th
depletion layerh(t).

B. Majority component wets the surface„f0Ì0…

1. Evolution pictures and laterally averaged profiles

Let us next consider the case wheref0.0, so that the
majority component wets the surface. Figure 9 shows
evolution of a disordered initial condition withf050.2. In
this case, the droplets are of the nonwetting componen
thin wetting layer is formed on the time scales of our sim

FIG. 9. Analogous to Fig. 1, but forf050.2.
2-7
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lations, and grows very slowly. The depletion layer th
forms adjacent to the wetting layer consists of anisotro
droplets with a linear dimension~parallel to the wall! which
diverges asf0→0. However, atf050.4 ~see Fig. 2 in Ref.
@26#!, the droplets forming the depletion layer are alrea
almost spherical. Figure 10~a! shows the laterally average
profiles corresponding to the evolution in Fig. 9, and co
firms the slow growth of the wetting layer.

It is relevant to ask why the wetting layer grows so slow
in the case where the majority component wets the surf
Essentially, the bulk droplets now compete with~rather than
feed! the wetting layer for the componentA, as the intrinsic
chemical potential forA is lower on the surface of the drop
Thus, in Eq. ~9!, only the first term on the RHS is
operational—the intrinsic chemical-potential gradient ac
ally drives A into the bulk. To clarify this, Fig. 10~b! plots
fav,mav,Jav vs z at t52400 for T50. As in Fig. 2~b!, the
chemical potential is flat in the wetting layer as the syst
has equilibrated locally. In the depletion layer, the chemi
potential increases gradually—resulting in anA current to
the wetting layer. However, the chemical potential fa

FIG. 10. Analogous to Figs. 2~a! and 2~b!, but for f050.2.
06160
t
c

y

-

e.

-

l

sharply as one moves further into the bulk—resulting in
competingA current to larger values ofz. Similar consider-
ations apply for other values off0.0, when the bulk un-
dergoes phase separation. For the sake of brevity, we do
show evolution pictures and laterally averaged profiles
these cases here.

Finally, we consider an extremely off-critical case wi
f050.8. Figure 11 shows laterally averaged profiles for t
case. The corresponding evolution pictures are entir
‘‘black’’ as there is no phase separation on the time scale
our simulation, and we do not show these here. The form
the order-parameter profiles in Fig. 11 is analogous to enr
ment profiles seen forT.Tc , i.e., when a miscible binary
mixture (AB) is placed in contact with a surface which pr
fers A @34#. The relevant dynamical equations are obtain
by linearizing Eqs.~1!, ~5!–~6! ~at T50) aboutf0 and ne-
glecting lateral fluctuations. The bulk equation is alrea
given as Eq.~19!, and this should be supplemented with t
linearized boundary conditions,

]c~0,t!

]t
5V~0!1gf01gc~0,t!1g

]c

]z U
z50

, ~23!

05
]

]zF ~3f0
221!c2

1

2

]2c

]z2
2V~z!GU

z50

. ~24!

The general solution of Eq.~19! was already given in Eqs
~21! and ~22!. The complete solution to the boundary-valu
problem is presented in Ref.@34#, and we refer the intereste
reader to that work. We have already discussed so
asymptotic (s→0 or t→`) properties of the solution—a
detailed analysis is presented in Ref.@34#.

2. Growth kinetics of wetting layers

It is clear from the discussion in Sec. III B 1 that the bu
droplets compete with the wetting layer for componentA.
Accretion on the wetting layer is driven by the surfac

FIG. 11. Analogous to Fig. 2~a!, but for f050.8.
2-8
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potential with the growth lawR1(t);t1/(n12), i.e., R1(t)
;t1/6 for n54 in our simulations. Figure 12 plotsR1(t) vs
t1/6 for f050.2,0.4,0.6. In each case, the wetting-layer
netics is consistent with potential-driven growth. Over t
time range of our simulations, we see no slowing down d
to the attraction of theA component to the bulk droplets—w
expect these effects to be manifested at later times
shown in Fig. 12.

Finally, we briefly discuss the temporal evolution of th
wetting profiles in the extremely off-critical case, e.g.,f0
50.8 in Fig. 11. As discussed earlier, the evolution of p
files in this case is equivalent to the surface-enrichment p
lem @34# and we will directly quote results from that contex
The order-parameter profiles are double exponential with
length scalej1→const, and the other length scalej2

→t1/2. The position of the first zero of the profile@f(z,t)
2f0# grows logarithmically in time,R1(t); ln t. Further-
more, all moments of the enrichment profile exhibit diffusi
behavior, viz.,

^zm&5E
0

`

dzzm@f~z,t!2f0#;tm/2. ~25!

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discuss
of our results. We have undertaken a detailed analytical

FIG. 12. Plot ofR1(t) vs t1/6 for f050.2,0.4,0.6.@A log-log
plot of these data sets is presented in Fig. 3~a! of Ref. @26#.#
se
n,

06160
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numerical study of surface-directed phase separation via
fusive transport in binary mixtures with off-critical compos
tion (f0Þ0). The primary goal of our study is to system
atize the diverse exponents observed for wetting-la
growth in various experiments and simulations.

We considered two distinct physical situations:~a! the mi-
nority component wets the surface (f0,0); and~b! the ma-
jority component wets the surface (f0.0). There are impor-
tant differences between these two cases. Forf0,0, the
wetting layer grows due to surface-potential gradients,
well as a gradient in the intrinsic chemical potential betwe
the bulk and the wetting layer. This results in a crosso
from potential-dependent growth,R1(t);t1/(n12) for V(z)
;z2n, to universal growth. The asymptotic growth laws a
R1(t);t1/3, when the bulk undergoes phase separation;
R1(t);t1/2, when the bulk does not phase separate.

For f0.0, the wetting layer grows only due to surfac
potential gradients. In this case, the gradient of the intrin
chemical potential drives the preferred component into
bulk. For moderate values off0, we find a potential-
dependent growth law,R1(t);t1/(n12), which is expected to
slow down at later times. Forf0@0, the bulk does not un-
dergo phase separation. Then, the problem of surfa
directed phase separation is equivalent to the surfa
enrichment problem forT.Tc @34#, and we have a complet
analytical understanding of the evolution of order-parame
profiles. For example, the ‘‘wetting layer’’ grows logarithm
cally in time, R1(t); ln t, and various moments of the pro
file exhibit diffusive behavior.

The above discussion has focused on the case of s
mixtures, where segregation occurs via diffusive transp
alone. There has also been great experimental inte
@35,36# in the case of fluid mixtures, where hydrodynam
modes can enable a rapid draining of the preferred com
nent to the surface. For highly off-critical quenches, the flu
morphology is not interconnected and diffusive transp
drives phase separation. In that case, the above scenari
plies again. However, for smaller values off0, the system
morphology is bicontinuous and hydrodynamic effects p
an important role in the kinetics of wetting and phase se
ration. A recent study of this has been performed by Bas
et al. @37#, and we refer the interested reader to that work
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